ARTICLE BEGINNING

AUTOMATIC TRANSMISSIONS
Mitsubishi F4A20 Series

APPLICATION

TRANSMISSION APPLICATION TABLE

<table>
<thead>
<tr>
<th>Vehicle Application</th>
<th>Transmission Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colt 4-Speed (1990-92)</td>
<td>F4A21 & F4A22</td>
</tr>
<tr>
<td>Colt Vista 2WD (1990-94)</td>
<td></td>
</tr>
<tr>
<td>1.8L & 2.0L</td>
<td>F4A22</td>
</tr>
<tr>
<td>2.0L Turbo</td>
<td>F4A23</td>
</tr>
<tr>
<td>Eclipse FWD (1990-94)</td>
<td></td>
</tr>
<tr>
<td>1.8L & 2.0L</td>
<td>F4A22</td>
</tr>
<tr>
<td>2.0L Turbo</td>
<td>F4A23</td>
</tr>
<tr>
<td>Expo FWD (1992-94)</td>
<td></td>
</tr>
<tr>
<td>1.8L</td>
<td>F4A22</td>
</tr>
<tr>
<td>2.4L</td>
<td>F4A23</td>
</tr>
<tr>
<td>Galant FWD</td>
<td></td>
</tr>
<tr>
<td>DOHC (1990-93)</td>
<td>F4A22</td>
</tr>
<tr>
<td>SOHC (1990-93) (1)</td>
<td>F4A22</td>
</tr>
<tr>
<td>(1994)</td>
<td>F4A23</td>
</tr>
<tr>
<td>Laser Non-Turbo (1991-94)</td>
<td>F4A22</td>
</tr>
<tr>
<td>Mirage</td>
<td></td>
</tr>
<tr>
<td>1.6L (1990-92)</td>
<td>F4A21</td>
</tr>
<tr>
<td>1.8L (1993-94)</td>
<td>F4A22</td>
</tr>
<tr>
<td>Summit FWD</td>
<td>F4A21 & F4A22</td>
</tr>
<tr>
<td>Sigma (1990)</td>
<td>F4A23</td>
</tr>
<tr>
<td>Summit Wagon 2WD (1990-94)</td>
<td></td>
</tr>
<tr>
<td>1.8L & 2.0L</td>
<td>F4A22</td>
</tr>
<tr>
<td>2.0L Turbo</td>
<td>F4A23</td>
</tr>
<tr>
<td>Talon Non-Turbo (1991-94)</td>
<td>F4A22</td>
</tr>
</tbody>
</table>

(1) - Some 1990-92 Galant models with SOHC engine may be equipped with a KM175 model automatic transmission.

IDENTIFICATION

Vehicle information code plate is riveted to firewall in engine compartment area. See Fig. 1.
DESCRIPTION

These Mitsubishi transaxles consist of transmission, torque converter, transfer assembly and differential. The F4A20 series is an electronically controlled, fully automatic 3-speed unit with an overdrive 4th gear. The transaxle consists of a 3-element torque converter with damper clutch, one planetary gear set, one brake band, 4 multiple-disc clutch assemblies. Transaxle shifting points are controlled by the Transmission Control Unit (TCU). The TCU calculates proper shift points using input from various sensors.

LUBRICATION & ADJUSTMENTS

See the appropriate TRANSMISSION SERVICING - A/T article in the AUTOMATIC TRANS SERVICING section.

TROUBLE SHOOTING

F4A20 SERIES

NOTE: Always verify proper electrical systems operation, fluid level and linkage adjustments before diagnosing shifting problems.

No Forward Or Reverse Drive
Manual linkage misadjusted, or faulty inhibitor switch.

No Forward Drive
Manual linkage misadjusted, improper fluid level or line
pressure, one-way clutch or oil pump failure, faulty valve body or pressure control valve stuck open.

No Reverse Drive
Manual linkage misadjusted, improper fluid level or line pressure, torque converter failure, faulty valve body, worn front clutch, low and reverse brake, missing "O" ring in low and reverse circuit or faulty pulse generator "B".

Engine Stalls When Shifted To "D" Or "R"
Insufficient engine performance, faulty valve body or damper clutch.

Slips In Drive
Manual linkage misadjusted, low fluid level or line pressure, one-way clutch failure, faulty valve body, sticking pressure control valve or worn rear clutch.

Slips In Reverse
Manual linkage misadjusted, low fluid level or line pressure, faulty low and reverse brake circuit or front clutch, sticking pressure control valve, missing "O" ring in low and reverse circuit or faulty valve body.

Stall RPM Too Low
Insufficient engine performance or torque converter failure.

Vehicle Creeps In "N"
Manual linkage misadjusted, parking mechanism failure, faulty inhibitor switch or faulty valve body.

Park Will Not Engage
Manual linkage misadjusted or parking mechanism failure.

Excessive Shock When Shifting To "R", "L", 2 Or "D"
Improper engine idle speed or manual linkage adjustment, faulty valve body, front clutch, rear clutch or low and reverse brake, misadjusted inhibitor switch, misadjusted TPS, overdrive switch failure or TCU failure.

No 2-3 Upshift
Faulty valve body, worn front clutch, pressure control valve sticking or faulty control unit.

No 3-4 Upshift
Malfunctioning end clutch, misadjusted manual linkage, faulty overdrive switch, or faulty control unit.

Overdrive Switch Inoperative
Faulty overdrive switch or faulty control unit.

Incorrect Shift Points
Faulty TPS, faulty valve body, faulty pulse generator "B", poor ignition switch contact or TCU failure.

Vehicle Starts Off In Second Speed
Misadjusted manual linkage, torque converter failure, faulty valve body, faulty inhibitor switch, faulty accelerator switch or TCU failure.

Excessive Shift Shock On 1-2 Or 3-4 Upshift
Faulty valve body, faulty kickdown band, kickdown servo misadjusted, faulty end clutch, misadjusted TPS, faulty pulse generator "A", faulty kickdown servo switch, faulty ignition signal system or TCU failure.

Excessive Shift Shock On Upshift
Faulty or misadjusted TPS, faulty valve body, faulty front clutch, faulty pulse generator "A", faulty ignition signal system.

Excessive Shift Shock On "D"-2 Downshift
Faulty valve body, misadjusted TPS, faulty pulse generator "A", faulty ignition signal system, faulty low and reverse brake or piston.

Engine Flares On Upshift
Low line pressure, misadjusted TPS, low fluid level, faulty valve body, faulty front or end clutch, faulty kickdown band, kickdown servo misadjusted, faulty pulse generator "A", faulty ignition signal system, faulty control valve or TCU.

Engine Flares On 3-2 Downshift
Low line pressure, faulty oil pump, worn front clutch, low fluid level, faulty valve body, faulty kickdown band, kickdown servo misadjusted, faulty pulse generator "A", misadjusted TPS, faulty kickdown servo switch, faulty ignition signal system, faulty control valve or TCU.

Excessive Shift Shock Cold
Faulty valve body or TCU.

Damper Clutch Inoperative
Torque converter failure, faulty valve body, faulty throttle position sensor, faulty pulse generator "A" or "B", faulty ignition signal system, damper clutch control solenoid open, faulty or misadjusted accelerator switch, faulty oil temperature sensor or faulty TCU.

Whining Noise From Converter Housing
Oil pump failure.

Rattling Noise From Converter Housing
Cracked flexplate or loose torque converter-to-flexplate bolt.

SHIFT-LOCK SYSTEM
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| The selector lever can be operated from "P" to "R" without depressing the brake pedal when the ignition key is in the ACC position. | • Damaged shift lock lever, foreign matter caught in the mechanism
• Poorly adjusted shift lock cable, broken or disconnected cable
• Broken or fatigued return spring of shift lock cable (shift lock lever side) | • Check selector lever bracket assembly and replace if necessary.
• Check, adjust or replace shift lock cable. |
| The selector lever cannot be moved from "P" to "R" when the brake pedal is depressed with the ignition key in the ACC position. | • Faulty selector lever assembly
• Shift lock cable, key interlock cable, automatic transaxle control cable binding
• Poor routing of shift lock cable, key interlock cable
• Broken or fatigued return spring of shift lock cable (brake pedal side) | • Check selector lever bracket assembly and replace if necessary.
• Check, adjust or replace shift lock cable and key interlock cable.
• Check routing of cables.
• Replace shift lock cable. |
| The selector lever can be moved from "P" to "R" when the brake pedal is depressed even though the ignition key is in the LOCK position | • Deformed, damaged or worn interlock cam or interlock lever
• Poorly adjusted, broken, stretched or disconnected key interlock cable | • Check interlock cam and interlock lever or replace selector lever bracket assembly.
• Check, adjust or replace key interlock cable. |
| The selector lever cannot be moved smoothly from "P" to "R" | • Shift lock lever cannot be moved smoothly due to a large amount of play or friction of the fulcrum pin of the shift lock lever.
• Poorly adjusted shift lock cable, considerable elongation of inner cable
• Poorly adjusted key interlock cable
• Broken or fatigued return spring of shift lock cable (brake pedal side)
• Interlock cam and interlock lever not sliding smoothly | • Check and adjust shift lock lever, check and replace selector lever bracket assembly.
• Check and adjust or replace shift lock cable and key interlock cable. |
| The selector lever cannot be moved from "R" to "P" | • Shift lock lever or interlock cam binding | • Check selector lever bracket assembly, apply grease or replace assembly. |
| The ignition key cannot be turned to LOCK when the selector lever is in the "P" position. | • Damaged interlock cam or interlock lever or foreign matter caught in the mechanism
• Poorly adjusted key interlock cable, binding inner cable
• Slide lever in key cylinder not sliding smoothly | • Check selector lever bracket assembly and replace if necessary.
• Adjust or replace key interlock cable.
• Check slide lever and replace if necessary. |
| The ignition key can be turned to LOCK even when the selector lever is at any position other than "P" | • Broken spring pin
• Damaged interlock cam
• Damaged interlock cover
• Poorly adjusted or broken key interlock cable, stretched inner cable
• Damaged slide lever | • Replace spring pin.
• Check selector lever bracket assembly and replace if necessary.
• Check and adjust or replace key interlock cable.
• Replace slide lever. |
| The stop light stays ON | • Poorly adjusted shift lock cable
• Broken shift lock cable spring | • Check and adjust or replace shift lock cable. |

Fig. 2: Shift Lock System Troubleshooting Chart
Courtesy of Mitsubishi Motor Sales of America.
TESTING

NOTE: See Fig. 3 for clutch, band and brake application chart.

SELF-DIAGNOSTIC TEST (F4A20 SERIES)

Self-Diagnostic Capabilities
1) Use an analog voltmeter or tester and diagnostic connector located at fuse block to read fault codes. See Fig. 4.
2) Random Access Memory (RAM) of TCU is capable of storing up to 10 different fault codes. Fault codes are stored in order of occurrence. One fault code can be stored up to 3 times.
3) If 10 fault codes have already been stored, addition of one or more new fault codes will cause the oldest codes to be cleared.
4) Stored fault codes are cleared when battery is disconnected. Fail-safe system activation locks transaxle in 3rd gear and allows vehicle operation in event of system malfunction.
5) Fail-safe fault codes are also stored in RAM. Up to 3 fail-safe codes can be stored.
6) Fail-safe operation (locked in 3rd) is cancelled when ignition switch is cycled OFF, but fail-safe code is retained in RAM.

Fig. 3: Clutch, Band & Brake Application Chart
Courtesy of Mitsubishi Motor Sales of America.
 Self-Diagnostic Test Procedure (F4A20 Series)

Connect voltmeter to diagnostic connector terminal No. 10 and ground connector No. 12. See Fig. 4. Turn the ignition switch to the ON position, and TCU memory contents will start immediately. Obtain the fault code(s) and refer to the descriptions in both the FAULT CODE IDENTIFICATION table and the FAIL-SAFE CODE IDENTIFICATION table.

FAULT CODE IDENTIFICATION TABLE

<table>
<thead>
<tr>
<th>Code</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Abnormal Increase Of TPS Output</td>
</tr>
<tr>
<td>12</td>
<td>Abnormal Decrease Of TPS Output</td>
</tr>
<tr>
<td>13</td>
<td>Incorrect Adjustment Of TPS System</td>
</tr>
<tr>
<td>15</td>
<td>Open Circuit Of Low Oil Temperature Sensor Circuit</td>
</tr>
<tr>
<td>16</td>
<td>Short Circuit Of High Oil Temperature Sensor Circuit</td>
</tr>
<tr>
<td>17</td>
<td>Open Circuit Of High Oil Temperature Sensor Circuit</td>
</tr>
<tr>
<td>21</td>
<td>Open Circuit Of Kickdown Servo Switch Circuit</td>
</tr>
<tr>
<td>22</td>
<td>Short Circuit Of Kickdown Servo Switch Circuit</td>
</tr>
<tr>
<td>23</td>
<td>Misadjustment Or Short Circuit Of Accelerator Switch</td>
</tr>
<tr>
<td>31</td>
<td>No Pulse Generator "A" Signal</td>
</tr>
<tr>
<td>32</td>
<td>No Pulse Generator "B" Signal</td>
</tr>
<tr>
<td>41</td>
<td>Open Circuit Of Shift Control Solenoid Valve "A"</td>
</tr>
<tr>
<td>42</td>
<td>Short Circuit Of Shift Control Solenoid Valve "A"</td>
</tr>
<tr>
<td>43</td>
<td>Open Circuit Of Shift Control Solenoid Valve "B"</td>
</tr>
<tr>
<td>44</td>
<td>Short Circuit Of Shift Control Solenoid Valve "B"</td>
</tr>
<tr>
<td>45</td>
<td>Open Circuit Of Pressure Control Solenoid Valve</td>
</tr>
<tr>
<td>46</td>
<td>Short Circuit Of Pressure Control Solenoid Valve</td>
</tr>
<tr>
<td>47</td>
<td>Open Circuit Of Damper Clutch Control Solenoid Valve</td>
</tr>
</tbody>
</table>
48 . Short Circuit Of Damper Clutch Control Solenoid Valve
49 Malfunction Of Damper Clutch System
51 1st Gear Non-Synchronous - Pulse Generator(s) Or Kickdown Brake
52 2nd Gear Non-Synchronous - Pulse Generator "A" Or Kickdown Brake
53 3rd Gear Non-Synchronous - Pulse Generator(s) Or Front Or Rear Clutch
54 4th Gear Non-Synchronous - Pulse Generator "A" Or Kickdown Brake

FAIL-SAFE CODE IDENTIFICATION TABLE

<table>
<thead>
<tr>
<th>Code</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>Open Circuit Of Pulse Generator "A"</td>
</tr>
<tr>
<td>82</td>
<td>Open Circuit Of Pulse Generator "B"</td>
</tr>
<tr>
<td>83</td>
<td>Shift Control Solenoid Valve "A" Short Circuit</td>
</tr>
<tr>
<td>84</td>
<td>Shift Control Solenoid Valve "B" Short Circuit</td>
</tr>
<tr>
<td>85</td>
<td>Pressure Control Solenoid Valve Circuit Failure</td>
</tr>
<tr>
<td>86</td>
<td>Shift Steps Non-Synchronous</td>
</tr>
</tbody>
</table>

ELECTRONIC COMPONENT TEST (F4A20 SERIES)

ELECTRONIC COMPONENT TESTING FLOWCHART INDEX (F4A20 SERIES)

<table>
<thead>
<tr>
<th>Component</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Wiring</td>
<td>Fig. 5</td>
</tr>
<tr>
<td>Oil Temperature Sensor</td>
<td>Fig. 5</td>
</tr>
<tr>
<td>Throttle Position Sensor</td>
<td>Fig. 5</td>
</tr>
<tr>
<td>Pulse Generator "A" or "B"</td>
<td>Fig. 6</td>
</tr>
<tr>
<td>Pressure Control Solenoid Valve (PSCV)</td>
<td>Fig. 7</td>
</tr>
<tr>
<td>Shift-Control Solenoid Valve (SCSV) "A" Or "B"</td>
<td>Fig. 7</td>
</tr>
<tr>
<td>Damper Clutch System</td>
<td>Fig. 8</td>
</tr>
<tr>
<td>Damper Clutch Control Solenoid Valve (DCCSV)</td>
<td>Fig. 9</td>
</tr>
<tr>
<td>Accelerator Switch</td>
<td>Fig. 10</td>
</tr>
<tr>
<td>Inhibitor Switch</td>
<td>Fig. 10</td>
</tr>
<tr>
<td>Kickdown (K/D) Servo Switch</td>
<td>Fig. 11</td>
</tr>
<tr>
<td>Transaxle Control Unit (TCU)</td>
<td>Fig. 11</td>
</tr>
</tbody>
</table>
Fig. 5: Electronic Component Testing (F4A20 Series - 1 of 7)
Courtesy of Mitsubishi Motor Sales of America.
Fig. 6: Electronic Component Testing (F4A20 Series - 2 of 7) Courtesy of Mitsubishi Motor Sales of America.
6. Pressure-control solenoid valve (PCSv)

Check the resistance between terminal 1 of the solenoid valve connector and the transaxle case.

- Resistance: too low or too high
 - Short-circuit, or damaged or disconnected wiring
 - Replace the PCSV.

2.9 ± 0.3Ω/20°C (68°F)

- No operation noise. (stroke: 0.3 mm (.012 in.) or less)
 - Foreign material caught between the valve and guide
 - Replace the PCSV.

Connect 12V between the transaxle case and terminal 1, switch ON and OFF and check for operation noise.

- Noise exists
 - Normal

7. Shift-control solenoid valve (SCSV) A or B

Check the resistance between terminal 3 or 4 of the solenoid valve connector and the transaxle case.

- Resistance: too low or too high
 - Short-circuit, or damaged or disconnected wiring
 - Replace the SCSV.

22.3 ± 1.5Ω/20°C (68°F)

- No operation noise. (stroke: 0.25 mm (.010 in.) or less)
 - Residue accumulated in valve and core
 - Replace the SCSV.

Connect 12V between the transaxle case and terminal 3 or 4, switch ON and OFF and check for operation noise of the solenoid valve, and check the valve stroke.

- Noise exists
 - Normal

Fig. 7: Electronic Component Testing (F4A20 Series - 3 of 7)Courtesy of Mitsubishi Motor Sales of America.
8. Damper clutch system

Pull the parking brake to set it securely.

Set the selector lever to "P" or "N", and start the engine.

With the engine idling, depress the foot brake firmly.

Set the selector lever to the "R" or "D" range.

Stop the engine.

Improper adjustment of idling

Readjust the idling.

Poor closure (sticking) of the damper clutch control solenoid valve.

Replace the damper clutch control solenoid valve.

Sticking of the clutch control valve

Overhaul the valve body.

Sticking (seizure) of the damper clutch

Replace the torque converter assembly.

Normal

Fig. 8: Electronic Component Testing (F4A20 Series - 4 of 7)

Courtesy of Mitsubishi Motor Sales of America.
9. Damper Clutch Control Solenoid Valve (DCCSV)

Check the resistance between terminal No. 2 of the solenoid valve connector and the transmission case.

Resistance: too low or too high

Standard Values:
- MITSUBISHI MODELS
 - Model Year 1992 & Earlier - 3Ω/20°C
 - Model Year 1993 & Later - 13Ω/20°C
 - Note: DO NOT install 13Ω solenoid in earlier models or ECU will be damaged.

- HYUNDAI MODELS
 - All Model Years - 3Ω/20°C

Short-circuit, or damaged or disconnected wiring

Replace the DCCSV.

Fig. 9: Electronic Component Testing (F4A20 Series - 5 of 7)

 Courtesy of Mitsubishi Motor Sales of America.
10. Accelerator switch (Up to 1993)

With the accelerator pedal not depressed, check the resistance between terminals 1 and 2.

- Continuity exists (resistance: 0)
- No continuity (resistance: ≠)

Check the installation of the accelerator switch; adjust if necessary.

Problem not solved.

Replace the accelerator switch.

With the accelerator pedal depressed slightly (about 5%), check the resistance between terminals 1 and 2.

- Continuity exists (resistance: 0)
- No continuity (resistance: ≠)

Normal

11. Inhibitor switch

In the "P" range, check for continuity between terminals 3 and 4, and terminals 8 and 9.

- Continuity exists

In the "R" range, check for continuity between terminals 4 and 7, and terminals 10 and 11.

- Continuity exists

In the "N" range, check for continuity between terminals 2 and 4, and terminals 8 and 9.

- Continuity exists

In the "D" range, check for continuity between terminals 4 and 6.

- Continuity exists

In the "2" range, check for continuity between terminals 1 and 4.

- Continuity exists

In the "L" range, check for continuity between terminals 4 and 5.

- Continuity exists

Normal

No continuity

Poor contact, or damaged or disconnected wiring.

Replace the inhibitor switch.

Fig. 10: Electronic Component Testing (F4A20 Series - 6 of 7)

Courtesy of Mitsubishi Motor Sales of America.
ROAD TEST

Before performing road test ensure fluid level is okay and control cable adjustments have been checked. During road test, transaxle must be checked for slipping of each friction element, a shock felt at engagement or proper upshift or downshift points. See Figs. 3, and 12 to 14.
Fig. 12: Shift Pattern Chart (1 of 3)
Courtesy of Mitsubishi Motor Sales of America.
Fig. 13: Shift Pattern Chart (2 of 3)
Courtesy of Mitsubishi Motor Sales of America.
HYDRAULIC PRESSURE TESTS

NOTE: In these testing procedures, an additional person may be necessary to activate the transmission throttle control cable. Before performing pressure tests ensure fluid level and condition are acceptable.

Pressure Test (F4A20 Series)
1) Pressure testing is an important step in diagnostic procedure. Ensure fluid is at operating temperature of 160-180°F (70-80°C). Raise and support vehicle. Install engine tachometer so it can be seen from driver seat. When testing reverse pressure, use 400-psi gauge. See Fig. 15.
2) Measure oil pressure under various conditions. Compare
results with specifications in Fig. 16.

Fig. 15: Locating Pressure Test Ports (F4A20 Series)

Courtesy of Mitsubishi Motor Sales of America

Fig. 16: Testing Transaxle Hydraulic Pressures (F4A20 Series)

Courtesy of Mitsubishi Motor Sales of America
Pressure Test Results (F4A20 Series)
1) If kickdown brake, front clutch, end clutch and low-reverse brake pressures are all low probable causes are: clogged oil filter, incorrect pressure regulator adjustment, sticking pressure regulator valve, incorrect oil pump discharge pressure or fluid pressure leakage at valve body.
2) Incorrect reducing pressure reading indicates: incorrect line pressure, reducing pressure filter clogging, reducing valve sticking or fluid pressure leakage at valve body.
3) Incorrect kickdown brake pressure reading indicates: fluid pressure leakage at kickdown servo or valve body malfunction.
4) Incorrect front clutch pressure reading indicates fluid pressure leakage at kickdown servo or valve body, malfunction of valve body or fluid pressure leakage at front clutch piston or retainer.
5) Incorrect end clutch pressure reading indicates: fluid leakage at end clutch piston, fluid pressure leakage at valve body or valve body malfunction.
6) Incorrect low-reverse brake pressure reading indicates: fluid pressure leakage between valve body and transaxle case at "O" ring, valve body malfunction or fluid pressure leakage at low-reverse brake piston or retainer.
7) Incorrect torque converter pressure indicates: clogging or leaking of oil cooler or lines, torque converter failure, leaking seal ring at input shaft or binding Damper Clutch Control Solenoid Valve (DCCSV) or damper control valve.

STALL TEST

CAUTION: DO NOT allow anyone to stand in front of or behind vehicle while performing stall test. Always block both rear wheels and apply parking and service brakes fully.

Stall Test Procedure
1) Check transaxle fluid level. Fluid should be at normal operating temperature of 160-180°F (70-80°C). Engine coolant should also be at normal operating temperature of 180-190°F (60-90°C).
2) Block both rear wheels. Install engine tachometer to be seen from driver's seat. Apply parking and service brakes fully. Start engine and move gear selector to "D" range.
3) With brakes fully applied, depress accelerator pedal fully to read maximum engine RPM. See STALL SPEED SPECIFICATIONS table.

NOTE: DO NOT hold wide open throttle for longer than 5 seconds at a time. If more than one stall test is required, operate engine at approximately 1000 RPM in neutral for 2 minutes to cool transaxle fluid.

4) Move gear selector to "R" range and repeat stall test procedure. See STALL SPEED SPECIFICATIONS table.

Stall Test Results
1) If stall speed is above specification in "D" range, rear clutch or overrunning clutch is slipping. HYDRAULIC PRESSURE TESTS can be performed to isolate problem.
2) If stall speed is above specification in "R" range, front
clutch or low-reverse brake is slipping. HYDRAULIC PRESSURE TESTS can be performed to isolate problem.

3) If stall speed is below specification in "R" and "D" ranges, insufficient engine performance or faulty torque converter are probable causes.

STALL SPEED SPECIFICATIONS TABLE

<table>
<thead>
<tr>
<th>Transaxle Model</th>
<th>Stall Speed RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4A20 Series</td>
<td>1800-2800</td>
</tr>
</tbody>
</table>

ON-VEHICLE SERVICE

INHIBITOR SWITCH & CONTROL CABLE ADJUSTMENTS

See the appropriate TRANSMISSION SERVICING - A/T article in the AUTOMATIC TRANS SERVICING section.

THROTTLE CONTROL CABLE ADJUSTMENT

See the appropriate TRANSMISSION SERVICING - A/T article in the AUTOMATIC TRANS SERVICING section.

THROTTLE POSITION SENSOR ADJUSTMENT

See the appropriate TRANSMISSION SERVICING - A/T article in the AUTOMATIC TRANS SERVICING section.

KICKDOWN SERVO ADJUSTMENT (F4A20 SERIES W/MITSUBISHI TOOL)

1) Thoroughly clean area around kickdown servo switch. Remove snap ring. Remove kickdown servo switch. Using Kickdown Servo Wrench (MD998918) and Wrench Adapter (MD998915-A), secure kickdown servo piston from turning. See Fig. 17.

CAUTION: DO NOT press piston inward while engaging wrench in piston. Tighten wrench adapter by hand.

2) Loosen lock nut back to "V" groove in adjusting rod. See Fig. 18. Thread inner half of Kickdown Servo Socket Wrench Set (MD998916) onto adjusting rod, and tighten it until it contacts lock nut. See Fig. 19. Place outer half of wrench set onto lock nut. Tighten inner and outer halves together using open end wrenches.
3) Remove outer half of wrench set. Using a torque wrench, tighten inner half of wrench set to 7.2 ft. lbs. (10 N.m). See Fig. 20. Back off wrench and repeat tightening to specified torque. Back off wrench once again, then tighten to 3.6 ft. lbs. (5 N.m). When specified torque is reached, back off wrench 2 1/4 turns.
4) Unlock inner half of wrench set from kickdown servo lock nut. Tighten lock nut by hand until it contacts kickdown servo piston. Tighten servo lock nut to 18-23 ft. lbs. (25-32 N.m).

NOTE: Ensure adjusting rod DOES NOT turn while tightening lock nut.

Fig. 20: Adjusting Kickdown Servo
Courtesy of Mitsubishi Motor Sales of America.

KICKDOWN SERVO ADJUSTMENT (F4A20 SERIES W/AFTERMARKET TOOL)

Adjustment Procedure
1) Ensure case area around servo cover is clean. Remove servo cover snap ring and servo cover. Select the correct Spanner Socket Support Guide to fit the servo bore from the 4 sizes available. See Fig. 21.

Fig. 21: Identifying KM Band Adjusting Tool Components

NOTE: The following procedure may be performed using KM Band Adjusting Tool Kit available from ZOOM Technology.

2) Insert the Servo Piston Spanner Socket into the
counterbored side of the Spanner Socket Support Guide. Insert these components into the servo bore. Slowly by hand, rotate the Servo Piston Spanner Socket until the lugs engage the cutouts on the servo piston. The tool is fully seated when the snap ring groove is completely exposed.

3) Install the snap ring in the exposed groove. If necessary, rotate the Servo Piston Spanner Socket to allow ease of installation of a 1 1/2" wrench to the socket. This should be done prior to loosening the servo pin lock nut.

4) Insert the Servo Pin Lock Nut Socket into the Servo Piston Spanner Socket. Turn the socket by hand until it has engaged the lock nut. Insert the Servo Pin Adjusting Socket into the Servo Pin Lock Nut Socket and rotate by hand until it engages the servo pin. See Fig. 22.

5) Using a 1 1/2" wrench or adjustable wrench, hold the Servo Piston Spanner Socket stationary.

CAUTION: DO NOT use pliers or a pipe wrench to hold the Servo Piston Spanner Socket stationary. This may cause injury to the user or damage to the tool.

6) Using a 1 1/16" wrench, on the Servo Pin Lock Nut Socket, loosen the servo pin lock nut by turning it counter clockwise. See Fig. 23. With one hand, push firmly inward on the Servo Pin Adjusting Socket. Using 2 fingers, turn the Servo Pin Lock Nut Socket counter clockwise until it contacts the bottom of the Servo Pin Adjusting Socket.

7) Using an INCH Lb. torque wrench and a shallow 1/2" 6-point socket, torque the Servo Pin Adjusting Socket to 86 INCH Lbs. Loosen the Servo Pin Adjusting Socket 2 or 3 turns and repeat the tightening procedure to 86 INCH Lbs. Loosen again and apply a final torque of 43 INCH Lbs. to the Servo Pin Adjusting Socket. See Fig. 24.

8) Using a 1/2" wrench, loosen the Servo Pin Adjusting Socket 2-2 1/4 complete turns. Hold the Servo Pin Adjusting Socket stationary and rotate the Servo Pin Lock Nut Socket clockwise until the servo pin lock nut firmly contacts the servo piston. Remove the Servo Pin Adjusting Socket.

9) Using a 1 1/2" wrench, hold the Servo Pin Spanner Socket stationary. Use a 1 1/16" wrench to tighten the servo lock pin nut with the Servo Pin Lock Nut Socket. Tighten the nut to approximately 18 ft. lbs. See Fig. 23.

10) Remove the snap ring and all remaining band adjusting tool components. Install the servo cover and snap ring. Ensure the sharp edge of the snap ring faces outward.
REMOVAL & INSTALLATION

See the appropriate TRANSMISSION REMOVAL & INSTALLATION - A/T article in the AUTOMATIC TRANS SERVICING section.
TORQUE CONVERTER

Torque converter is a sealed unit and cannot be disassembled for service. Replace unit if damaged or contaminated.

TRANSAXLE DISASSEMBLY

F4A20 Series

1) Prior to disassembly, plug all openings and thoroughly clean exterior of transaxle. Remove torque converter and measure input shaft end play.

2) Remove pulse generators "A" and "B" and inhibitor switch. Remove kickdown servo switch. Remove oil pan, gasket and filter. Remove oil temperature sensor.

3) Remove solenoid valve connector and valve body. Remove end clutch cover and end clutch assembly. Remove end clutch hub, thrust bearing and end clutch shaft.

4) Remove converter housing and oil pump assembly. Remove differential assembly and spacer. Remove input shaft with front and rear clutch assemblies. Remove thrust bearing and clutch hub. Remove thrust race and bearing. Remove kickdown drum and band.

5) Remove kickdown servo retainer, piston and spring. Remove anchor rod. Remove snap ring and center support. Remove reverse and forward sun gears. Remove planetary carrier assembly and thrust bearing. Remove wave spring, return spring, reaction plate, brake disc and brake plate. Remove end bearing retainer. Use impact driver if necessary.

6) Remove idler shaft lock plate and transfer idler shaft with Wrench Adapter (MD998344). Pull out transfer idler shaft and remove transfer idler gear bearing inner races (2) and spacer.

7) Remove snap ring from end bearing. Remove internal gear, output flange, transfer drive gear and bearing as an assembly from case. Remove transfer shaft cover.

COMPONENT DISASSEMBLY & REASSEMBLY

OIL PUMP

Disassembly

1) Remove "O" ring from oil pump housing. Remove 5 bolts and reaction shaft support from housing. Remove oil pump drive and driven gears from housing. Make reassembly reference marks on drive and driven gears.

2) Remove steel ball from housing. Remove snap ring and oil seal from oil pump drive gear. Remove 2 seal rings from reaction shaft support.

Inspection

1) Using a straight edge check oil pump gear side clearance. Clearance should be .0012-.0020" (.030-.050 mm). If not within specification, replace oil pump as an assembly.
2) Check reaction shaft support surface in contact with oil pump gear for evidence of interference and replace oil pump assembly if necessary.

Reassembly
1) Fit oil seal and snap ring to oil pump drive gear. After immersing drive and driven gears in ATF, install gears in pump housing. Align reference marks made during disassembly.
2) Install steel ball in pump housing and 2 seal rings to reaction shaft support. Ensure oil pump gears turn freely. Install new "O" ring to pump housing, and lubricate.
3) Install reaction shaft support to oil pump housing and tighten 5 bolts finger tight. Align reaction shaft support with oil pump housing and torque bolts to 89-106 INCH lbs. (10-12 N.m).

FRONT CLUTCH

Disassembly
1) Remove snap ring from clutch retainer. Remove 4 clutch reaction plates and 3 clutch discs.

NOTE: If clutch reaction plates and clutch discs are to be reused, DO NOT change the installation order or direction.

2) Compress return spring and remove snap ring, retainer and return spring. Remove piston from retainer and "D" rings from piston and retainer.

Reassembly
1) Install "D" rings in piston and retainer with round side out. Apply ATF to outside surface of "D" rings and install piston in front clutch retainer by pushing with hand.
2) Install return spring and spring retainer. See Fig. 25. Compress return spring and install snap ring.
3) Apply ATF and install clutch reaction plates and clutch discs. See Fig. 25. After installing snap ring check clearance between snap ring and clutch reaction plate. Clearance should be .016-.024" (.40-.60 mm). Selective snap rings are available to adjust clearance.
REAR CLUTCH

Disassembly
1) Remove snap ring and thrust race. Remove input shaft from rear clutch retainer. Remove snap ring from rear clutch retainer.
2) Remove clutch reaction plate, 2 clutch plates, 3 clutch discs and clutch pressure plate from retainer. See Fig. 26. Compress return spring and remove wave spring. Remove spring and piston. Remove "D" rings from piston.
Reassembly

1) Install "D" rings in clutch piston. Apply ATF to outside surfaces of "D" rings and install piston in clutch retainer by pushing with hand.

2) Install return spring on piston. Compress return spring and install wave spring. Install clutch pressure plate, 3 clutch discs, 2 clutch plates and clutch reaction plate in rear clutch retainer. See Fig. 26. Apply ATF to plates and discs and install snap ring.

3) Check clearance between snap ring and clutch reaction plate with spring compressed. Clearance should be .016-.024" (.40-.60 mm). Snap rings are common to those used for front clutch. Insert input shaft into clutch retainer. Install thrust race, snap ring and 3 seal rings on input shaft.
Disassembly
1) Remove snap ring, washer and return spring. Remove large snap ring, clutch reaction plate, clutch discs and clutch plates.
2) Remove clutch piston. Use compressed air if necessary. Remove seal ring from clutch retainer and 2 "D" rings from clutch piston.

Reassembly
1) Install "D" rings in piston. Apply ATF to outer surfaces of "D" rings, and install clutch piston in end clutch retainer by pushing by hand.
2) Install return spring and washer, then new snap ring. See Fig. 27. Install clutch plates, clutch discs and reaction plate in end clutch retainer. If using new discs, soak in ATF before installation.
3) Apply ATF to discs and install snap ring. Check clearance between snap ring and clutch reaction plate while compressed. Clearance should be .024-.033" (.60-.85 mm). Selective snap rings are available for clearance adjustments.

Fig. 27: Exploded View of End Clutch Assembly (F4A20 Series)
Courtesy of Mitsubishi Motor Sales of America

LOW & REVERSE BRAKE

Disassembly & Reassembly
Remove piston using compressed air. Remove "D" ring from piston. Fit new "D" ring in piston and apply ATF. Press piston in center support by hand.

PLANETARY GEAR SET

Disassembly
1) Remove 3 bolts retaining overrunning clutch outer race assembly. Remove overrunning clutch outer race assembly and overrunning clutch end plate. Remove short pinion shaft, spacer bushing and 2 front thrust washers.
2) Remove only one short pinion using care not to lose 17 needle rollers in short pinion. Remove thrust bearing from pinion carrier. Remove overrunning clutch by pushing outer race out using fingers.

Reassembly
1) Install thrust bearing in pinion carrier and ensure correct fit. Apply generous amount of petroleum jelly to inside diameter of short pinion and install 17 rollers.
2) Align holes in front and rear thrusts with shaft hole of carrier. Install short pinion, spacer bushing and 2 front thrust washers and align holes. Insert pinion shaft. Install end plate in overrunning clutch outer race. Push overrunning clutch in outer race. Ensure proper installation direction. See Fig. 28.
3) Apply petroleum jelly and install overrunning clutch end plate. Install overrunning clutch assembly to carrier and align bolt holes. Torque bolts to 25-32 ft. lbs. (35-45 N.m).

INTERNAL GEAR & TRANSFER DRIVE GEAR SET

Disassembly
Remove snap ring from rear end of output flange. Using a puller, remove bearings (2) and transfer drive gear from output flange. Remove large snap ring, and separate internal gear from output flange.

NOTE: If replacing output flange or transfer drive gear, service as a set only.

Reassembly
1) Press transfer drive gear and bearings on output flange. Make sure the transfer drive gear is installed in the proper
2) Install output flange snap ring. This snap ring is selective; use thickest one that can be installed in groove. Standard value for snap ring is 0-.0236" (0-.060 mm).

![Exploded View of Internal & Transfer Gear](image)

Fig. 29: Exploded View of Internal & Transfer Gear

Differential

Disassembly

1) Remove drive gear and bolts from differential case. Using puller, remove taper roller bearing. Inspect bearing.

NOTE: When removing parts that are to be reused, mark position and direction for reference during reassembly.

2) Drive out lock pin with punch. Remove pinion shaft, pinion gears and washers. Make reference marks for reassembly.

3) Remove side gears and spacers. Mark right and left sides of gears for reference during reassembly.

Reassembly

1) Install side gears and spacers in differential case in noted positions. If new side gears are being used install spacers of medium thickness, .0366-.0394" (.930-1.000 mm). Install pinion gears and washers in case and insert pinion shaft.

2) Measure backlash between pinion gear and side gear. Backlash should be .001-.006" (.025-.150 mm) and right and left hand gear pairs should have equal backlash. If not within specification select a spacer for correct backlash.

3) Install the pinion shaft lock pin in the direction shown. See Fig. 30. After installation, ensure correct installation depth of lock pin. Projection should be less than .118" (3.00 mm).

NOTE: DO NOT reuse lock pin. Lock pin NOT requiring more than 440 lbs. (2000 N) installation load must NOT be used.
4) Install bearings and drive gear on differential case. Apply ATF to bolts, and tighten bolts to 96-103 ft. lbs. (130-140 N.m) in a crisscross pattern.

Fig. 30: Exploded View of Differential Assembly
Courtesy of Mitsubishi Motor Sales of America

KICKDOWN SERVO PISTON

Disassembly & Reassembly
Disassemble servo piston, check for damage and wear, apply ATF and reassemble. See Fig. 31.

Fig. 31: Exploded View of Kickdown Servo Piston Assembly
Courtesy of Mitsubishi Motor Sales of America

SPEEDOMETER DRIVEN GEAR
Disassembly & Reassembly

Drive out spring pin and disassemble gear and sleeve. DO NOT reuse "O" ring, oil seal and spring pin. Apply a light coat of gear oil to speedometer driven gear shaft. Assemble and drive in spring pin. See Fig. 32.

Fig. 32: Exploded View of Speedometer Gear Assembly

Courtesy of Mitsubishi Motor Sales of America

VALVE BODY

NOTE: DO NOT clamp any portion of valve body or transfer plate in a vise. Any slight distortion of valve body or transfer plate will result in sticking valves, excessive leakage or both. Clean all parts with ATF. DO NOT use shop towels during reassembly operation.

Disassembly (F4A20 Series)
1) Remove solenoid valves and manual valve. Remove valve stopper and clamp. Remove 13 bolts and remove lower valve body.
2) Remove separator plate from intermediate plate. Remove relief spring, 2 steel balls and oil filter from intermediate plate.
3) Remove 8 bolts, and remove intermediate plate and upper separating plate. Remove 3 steel balls, Teflon ball and 2 stopper plates from upper valve body. See Fig. 33. Remove valves, springs and plugs as shown in Fig. 34.

Reassembly (F4A20 Series)
1) Clean all parts with ATF. DO NOT use shop towels during reassembly operation.
2) Check sliding surfaces of oil valves and valve body for scratches or damage. Check springs for deformation or damage.
3) Lubricate with ATF and install valves, springs and plugs. See Fig. 34.
Fig. 33: Locating Steel Balls (F4A20 Series)
Courtesy of Mitsubishi Motor Sales of America
1) Install brake reaction plate, brake plate and brake disc.
in transaxle case. Install a pressure plate with adequate size and fit the return spring. Ensure return spring is installed in proper direction.

2) Apply petroleum jelly to wave spring and stick it to the center support. Install center support and snap ring in case. Check low and reverse brake end play by mounting a dial indicator on rear of transaxle case. Install dial indicator through transfer idler shaft hole so its feeler is held perpendicular to brake reaction plate.

3) Using a hand pump feed air into low and reverse brake and read dial indicator deflection. Select a pressure plate to obtain specified end play of .0315-.0394" (.800-1.000 mm). Install transfer shaft bearing outer race in case. Install parking sprag rod on detent plate, then push manual control shaft in transaxle case. Torque manual control shaft set screw to 71-89 INCH lbs. (8-10 N.m).

4) Install sprag rod support and torque bolts to 15-20 ft. lbs. (20-27 N.m). Install bearings on transfer shaft and install shaft in transaxle case. Using a press, install transfer driven gear. Torque transfer shaft lock nut to 148-170 ft. lbs. (200-230 N.m) and stake lock nut to prevent loosening.

5) Measure transfer shaft end play and select a spacer which provides 0-.0010" (0-.025 mm) end play. Install transfer shaft cover. Assemble the planetary carrier, output flange, transfer drive gear and bearing and install in transaxle case. See Figs. 35 and 36. Install snap ring on output flange rear bearing.
Fig. 35: Transaxle Assembly (F3A20 & F4A20 Series – 1 of 2)
Courtesy of Mitsubishi Motor Sales of America
6) Coat transfer idler spacer and attach it to case. Install 2 taper roller bearings and spacer in transfer idler gear. Place
transfer idler gear in transaxle case and insert idler shaft from outer side of case.

7) Using Special Tool (MD998344) tighten idler shaft and measure preload at output flange. Adjust preload by tightening or loosening idler shaft. Preload should be 7.1 INCH lbs. (0.8 N.m).

8) After preload adjustment is complete, eliminate backlash between the idler shaft and lock plate by moving the idler shaft in the loosening direction. Install lock plate and torque to 15-20 ft. lbs. (20-27 N.m).

9) Install output flange bearing retainer and torque screws to 13-16 ft. lbs. (17-22 N.m). Apply a 5 mm bead of sealant (3M Stud Locking No. 4176) to the top. Sealant should not stick out of screw head. Stake screws to prevent loosening.

10) Install planetary carrier with thrust bearing No. 12 in place, in transaxle case. Assemble reverse sun gear and forward sun gear and install in planetary carrier. See Fig. 37. Install low and reverse brake assembly ensuring 2 new "O" rings are properly positioned on center support. See Fig. 38.

![Fig. 37: Assembling Sun Gears](Courtesy of Mitsubishi Motor Sales of America)

![Fig. 38: Positioning "O" Rings On Center Support](Courtesy of Mitsubishi Motor Sales of America)

11) Apply ATF to "O" rings. Install center support, ensuring
wave spring does not shift out of position. Install center support
snap ring, ensuring snap ring ends are aligned with mounting hole for
pulse generator "A".

12) Install kickdown band anchor rod. Install kickdown servo assembly
and snap ring. Install kickdown band and attach ends to anchor rod and
servo piston rod.

13) Install kickdown drum and position band on drum. Apply
petroleum jelly to thrust bearing No. 8 and stick it to kickdown drum.
Apply petroleum jelly to thrust race No. 7 and stick it to rear clutch
hub.

14) Install clutch hub to sun gear splines and attach thrust bearing No. 6 to outer side of clutch hub. Install thrust washer No. 2
and thrust bearing No. 4 on rear clutch assembly. Assemble front and
rear clutch assemblies and install in transaxle case. Install
differential assembly.

15) If end play that was measured and recorded at disassembly
is not within specification, adjust end play to specification by
selecting thrust race No. 3 and thrust washer No. 1. End play should
be .012-.040" (.30-1.00 mm). Install oil pump assembly, torque bolts to
11-16 ft. lbs. (15-22 N.m), and recheck end play. Readjust as
necessary.

16) Measure differential end play by placing a .4" (10 mm)
long, .12" (3.0 mm) diameter piece of solder at 2 locations on the
differential bearing outer race. See Fig. 39. Install converter
housing, without gasket, and tighten bolts to 14-17 ft. lbs. (19-23 N.
m).

Fig. 39: Measuring Differential End Play
Courtesy of Mitsubishi Motor Sales of America

17) Remove converter housing and measure thickness of the
crushed solder with a micrometer. Determine thickness of spacer to be
installed using the following formula: Thickness of solder =
thickness of spacer at differential + gasket thickness .0149" (.380
mm) - end play at differential. End play should be 0-.004" (0-.10 mm).

18) Apply silicone grease to hatched area of transaxle case
and install new case gasket. Install converter housing and torque
bolts to 14-17 ft. lbs. (19-23 N.m). Install end clutch shaft with the
longest spline end towards torque converter end of transaxle. Fit
thrust washer to end clutch return spring.

19) Install end clutch hub to end clutch. Using petroleum
jelly, stick thrust bearing No. 13 to end clutch hub and install end
clutch assembly. Attach new "O" ring to end clutch cover and install
on transaxle case. When installing end cover, ensure the screw holes
are correctly aligned. If aligned after installing, "O" ring may be
twisted. Torque end cover bolts to 53-71 INCH lbs. (6-8 N.m).
20) Install brake oil passage "O" ring at top center of valve body, and install valve body assembly to transaxle case. Ensure manual control shaft pin is in slot of manual valve. Install solenoid valve connector in transaxle case using new "O" ring. Tighten valve body mounting bolts to 89-106 INCH lbs. (10-12 N.m). See Fig. 40.

21) Install oil filter, and tighten bolts to 44-62 INCH lbs. (5-7 N.m). With magnets in place, install oil pan. Tighten bolts to 89-106 INCH lbs. (10-12 N.m). Install kickdown servo switch using new "D" ring, and secure using snap ring. Install inhibitor switch and manual control lever.

22) Adjust inhibitor switch. Install pulse generators "A" and "B". Apply ATF to torque converter sealing area, and install torque converter. Measure distance between ring gear end and converter housing end. Installed depth should be about .47" (12.0 mm).

![Fig. 40: Locating Valve Body Bolts](image)

TORQUE SPECIFICATIONS

TORQUE SPECIFICATIONS TABLE

<table>
<thead>
<tr>
<th>Application</th>
<th>Ft. Lbs. (N.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing Retainer Bolts</td>
<td>13-16 (17-22)</td>
</tr>
<tr>
<td>Converter Housing Bolts</td>
<td>14-17 (19-23)</td>
</tr>
<tr>
<td>Differential Drive Gear Bolts</td>
<td>96-103 (130-140)</td>
</tr>
<tr>
<td>Drive Plate-To-Converter Bolts</td>
<td>34-39 (46-53)</td>
</tr>
<tr>
<td>Idler Shaft Lock Plate Bolt</td>
<td>15-20 (20-27)</td>
</tr>
<tr>
<td>Manual Control Lever Nut</td>
<td>13-16 (17-22)</td>
</tr>
<tr>
<td>Oil Pump Bolts</td>
<td>11-15 (15-20)</td>
</tr>
<tr>
<td>Planetary Carrier-To-Overrunning Clutch</td>
<td>26-33 (35-45)</td>
</tr>
<tr>
<td>Sprag Rod Support Bolts</td>
<td>15-20 (20-27)</td>
</tr>
<tr>
<td>Transfer Shaft Lock Nut</td>
<td>148-170 (200-230)</td>
</tr>
</tbody>
</table>

INCH Lbs. (N.m)

<table>
<thead>
<tr>
<th>Application</th>
<th>INCH Lbs. (N.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Clutch Cover Bolts</td>
<td>53-71 (6-8)</td>
</tr>
<tr>
<td>Governor Set Screw</td>
<td>71-89 (8-10)</td>
</tr>
<tr>
<td>Inhibitor Switch Bolts</td>
<td>89-106 (10-12)</td>
</tr>
<tr>
<td>Manual Control Lever Set Screw</td>
<td>71-89 (8-10)</td>
</tr>
<tr>
<td>Oil Filter Bolts</td>
<td>44-62 (5-7)</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>89-106 (10-12)</td>
</tr>
<tr>
<td>Oil Pump Housing Bolts</td>
<td>89-106 (10-12)</td>
</tr>
</tbody>
</table>
Pulse Generator Bolt 89-106 (10-12)
Valve Body Bolts 35-53 (4-6)
Valve Body-To-Case Bolts 89-106 (10-12)

WIRING DIAGRAMS

![Wiring Diagram](image_url)

Fig. 41: F4A21 Schematic (1991-92 Mirage Shown; Others Similar)
Fig. 42: F4A22 Schematic (1993-94 Colt/Summit Shown; Others Similar)

END OF ARTICLE